

**שנת האור הבין-לאומית 2015
פרס נובל 2013 - כימיה חישובית
רוזופסין**

**The International Year of Light 2015
Nobel Prize 2013 -
Computational Chemistry
Rhodopsin**

שבט התשע"ה • 2/2015 • 966

בכל מקום, בכל נוף

תיאור הבול ומעטפת היום הראשון

בחולק הומני של הבול מתואר החלבן רוזופסין אשר בנוי מבני משכבה עליים פפטידיים, המחברים זה לזו. בתוך החלבן זהה, אשר נמצא בתוך קרום תא הראייה, לכודה מולקלות רטילן, קולגן האו, המוצגת כקבוצה של כדורים אפורים. מצד השמאלי של הבול מוצגת משוואות שדרינגר, שהיא הכל' הבסיסי ביותר של מכיקת הקוונטים. חתן פרס נובל ארוחן שדרינגר ניסח משוואה זאת בשנת 1925 כדרך לתאר מצבים שונים של אטומים ומולקלות, ובכך

פתח את השער לתהומם החישוביים בכימיה ובפיזיקה. בשובל הבול מוצגים סמל שנת האור הבין-לאומית וכן ציור של שני הסוגים העיקריים של תא הראייה בראשית האנושות: תא מוש (בצבע צהוב) ותאי חרוט (בצבע אדום, יירוק וכחול). המוטות אחראים לראייה בשחור-לבן, והחרוטים אחראים לראיית צבעים. בין האנושות קיימים שלושה סוגים של תא חרוטים, אשר מבדינים באור אדום, יירוק או כחול. כל תא הראייה שבתוך הרשתית מתרגמים את גירוי האור לשינויים כימיים ולאותות חשמליים,

המשוגרים למרכז הראייה שבמוח באמצעות עצבי הראייה. המוטה מציגה שתי משוואות. בשורה העילונה משוואת ניוטון ובלוש השורות האחרות משוואת המתארת את שדה הכוח ע', שהוא סך כל האנרגיה הפוטנציאלית של המולקללה. אריה ורשל שניאור ליפסן פיתחו בשנת 1960 את המשוואה הזאת כדי לחשב את ציובותן של מולקלות קסומות. ורשל ולויס המשטמש במסוואה הזאת כדי למדוד על הדינמיקה של חלבונים באמצעות פתרונה של משוואת ניוטון.

בול זה מצין שני אירועים שיש בהם הרבה הרבה מן המשותף: הראשון הוא פרס נובל בכימיה לשנת 2013, אשר הענק במשותף למרטין קרפלס (אוניברסיטת הרווארד), מיכאל לויוס (אוניברסיטת סטנפורד) ואריה ורשל (אוניברסיטת דרום קליפורניה) על פיתוח מודלים ממוחשבים לתיאור מערכות כימיות גדולות ומורכבות. הפרס מכיר בתרומותיהם המהפכניות בשנים 1968-1976 (1976-1968), אשר צירו בתחום חדש של ביופיזיקה מולקלרית חישובית, וסיפקו גישות וטכניקות חדשות להבנת מולקלות ביולוגיות מורכבות. גישתם שינתה את האופן שבו אנו מבינים את תפקודם של חלבונים, והגדרה תחום מדעי חדש, אשר השפיע באופן משמעותי על תחומיים רבים אחרים.

הairoeur השני הוא שנת האור הבין-לאומית 2015, אשר הוכרזה על ידי האו"ם כדי לציין את מדע האור, את הטכנולוגיות מבוססות האור ואת חשיבותן לאנושות.

המרכיב הישראלי של פרס נובל זה הוא ממשוואת. מיכאל לוייס, יlid דרום אפריקה, הוא אזרח בריטניה וישראל. אריה ורשל, שנולד בקייבוץ שדה נחום, הוא אזרח ארצות הברית וישראל. מרטין קרפלס, יlid יוניה, בן למשפחה יהודית, נמלט עם משפחתו מהכיבוש הנאצי והגיע לארה"ב בשנת 1938. חלק ניכר ורשל ולויס פעלו גם בזעה במקון צ'צ'ן, כאשר ורשל ולויס פעלו גם כחברים סגל עצמאיים, ועוד לפני כן, כאשר שניהם היו סטודנטים בהנחייתו של שניאור ליפסן (1914-2001). גם מרtin קרפלס ביצע חלק ממחקריו במסגרת שנת שבתון קבוצת המחבר של ליפסן. היה זה צירוף מקרים ממשם, שפרס נובל הענק לחברי קבוצתו של שניאור ליפסן סמוך ליום השנה ה-100 להולדתו. אחד ההשגים המרשימים של חתני הפרס הוא הדמיית הדינמיקה המולקלרית של תהליכים ביולוגיים, כמו תגובות אטומיות, תגובות של העברת אלקטرونים ותהליכים של מעבר יונים בחלבונים. השיטות הללו מאפשרות תיאור ממוחשב של איזוראים אטמיים המתרחשים בטבע. אחת הדוגמאות המוקדמות והמשמעותית של אסטרטגיה זאת היא פיענוח האיזוראים המולקלריים הראשונים בклיטת האור, אשר מתרחשים בתהילת הראייה. אריה ורשל היה החוקר המוביל אשר פיענה את תפקודו של החלבן רוזופסין, שהוא הpigment הבiology בנתאי הרשותה שבען.

אהוד קין

פרופסור לכימיה בטכניון, נשיא החברה הישראלית לכימיה, העורך הראשי של כתב העת הישראלי לכימיה, יי"ר ועדת מקצוע הכימיה במשרד החינוך.

The International Year of Light 2015

Nobel Prize 2013 - Computational Chemistry, Rhodopsin

This stamp marks two events that have much in common.

The first is the 2013 Nobel Prize in Chemistry that was jointly awarded to Martin Karplus (Harvard University), Michael Levitt (Stanford University) and Arieh Warshel (University of Southern California) for the development of multi-scale models for complex chemical systems. The prize recognized their revolutionary contributions during the years 1968–1976, which created the new field of computational molecular biophysics and provided new approaches and techniques for understanding complex biological molecules. Their approach changed the way we think about proteins and defined a new area of science, which has influenced and inspired many other fields.

The second event is the International Year of Light 2015, which was declared by the United Nations to celebrate the light sciences, light-based technologies and their importance to humankind.

The Israeli component of this Nobel Prize is significant. Michael Levitt, born in 1947 in Pretoria, South Africa, holds both British and Israeli citizenship. Arieh Warshel, born in 1940 in Kibbutz Sde-Nahum, Israel is a citizen of both the USA and Israel. Martin Karplus, born in Vienna in 1930 to an Austrian Jewish family, fled with his family from the Nazi occupation to the USA in 1938. A substantial portion of the honored work was undertaken at the Weizmann Institute of Science when Warshel and Levitt were independent scientists and even earlier when both worked as students under the supervision of Shneior Lifson (1914–2001). Martin Karplus also conducted some of his research during a sabbatical year he spent working with the Lifson research group. It was a happy coincidence that the Nobel Prize committee recognized this group effort very close to what would have been Shneior Lifson's 100th birthday.

One of the most impressive achievements of these Nobel laureates' work is the molecular dynamics simulations of biological processes, such as enzymatic reactions, electron transfer reactions and ion transport in proteins. These simulations provide a computerized description of the actual events that occur in nature. One of the earliest and most significant examples of this strategy is the deciphering of the precise molecular events that occur during the process of vision. Arieh Warshel was the key researcher who described the role played by the protein Rhodopsin, which is the biological pigment in retina cells.

Ehud Keinan

Professor of Chemistry at the Technion – Israel Institute of Technology, President of the Israel Chemical Society, Editor-in-Chief of the Israel Journal of Chemistry and Chairman of the Advisory Council, High School Chemistry Education, Ministry of Education.

חותמת אירע להופעת הבול SPECIAL CANCELLATION

Description of the Stamp and the First Day Cover

The right side of the stamp features the protein Rhodopsin, which is a bundle of seven helices connected to each other by peptide loops. This protein, which is embedded within the cell membrane, binds retinal, a small light-sensitive molecule shown as a group of grey spheres that represent atoms. The left side of the stamp exhibits the Schrödinger equation, which is the most fundamental tool of quantum mechanics. Nobel Prize laureate Erwin Schrödinger formulated this equation in 1925 as a way to describe various states of atoms and molecules, opening the door for the science of theoretical and computational chemistry and physics.

The stamp tab features the logo of the International Year of Light as well as a schematic representation of the two major types of light-sensitive cells in the human retina: the rods (in yellow) and the cones (in blue, green and red). The rods are responsible for black-and-white vision and the cones are responsible for color vision. The human eye contains three types of cone cells, which discern red, green or blue light. All of the retinal cells translate the light stimulus to chemical changes and electrical impulses, which are transmitted to the vision centers in the brain via the optic nerves.

The First Day Cover shows two equations. The top row displays the Newton equation whereas the other three rows exhibit the Force Field U, which is the total potential energy of a molecule. Arieh Warshel and Shneior Lifson originally developed this equation in the late 1960's to study the stability of small molecules. Levitt and Warshel used this equation to study large biomolecules. Karplus used it to study the dynamics of proteins by solving the Newton equation.

הנפקה:	פברואר 2015
מידת הבול (מ"מ):	W 30 x H 40 mm
Plate:	977
bowls in billions:	15
Sheets per Sheet:	5
Method of printing:	Offset
Security mark:	Microtext
Printer:	Cartor Security Printing, France