מאיץ חלקיקים

Koffler Accelerator

השירות הבולאי המשרד הראשי: שד' ירושלים 12, יפו 61080

220 PHILATELIC SERVICES
18.10.77 MAIN OFFICE: TEL AVIV - YAFO . ISRAEL

מאיץ־קופלר במכון ויצמן למדע

מאיע-קופלר החדש, שהוכנס לא מכבר לפעולה במכון ויצמן, מאפשר לפיסיקאי הגרעין של ישראל להסתייע באחד המכשירים המתקדמים ביותר לחקר סודותיו של היקום. במאיץ בעל שני המגדלים, הבנוי בסגנון העתיד והמתנשא גבוה מעל שטח המכון ברחובות, הותקן פלטרון בעל עצמה של U.D. מכשיר מחקר מתוחכם לחקר גרעין האטום.

הרעיון להקמת המאיץ החדש עלה לראשונה בשנת 1968, כשנת־ ברר שעתידו של מחקר המבנה הגרעיני בישראל תלוי ברכישתו ובהתקנתו של מאיץ מודרני. כעבור תקופה של לימוד ושל הערכה קפדניים של דגמי מאיצים שונים, ניתן האות למימושה של תכנית הפלטרון, אחת המשימות המסובכות ביותר שבוצעה אי־פעם בישראל. אחר־כך בא שלב הבניה המדוקדקת, בפיקוח צוות של מדעני המכון, בראשות ד"ר אליאל סקורניק.

פרט למלחמת יום הכיפורים, שגרמה לעיכוב הבניה למשך כחצי שנה, לא חלו כמעט דחיות והמאיץ – שלבו הראשון של מרכז קנדה לפיסיקה גרעינית – נחנך ב־9 בנובמבר 1976 בנוכחות

אישי ממשלה, מדענים ואורחים חשובים מקנדה ומישראל. מגדלי המאיץ החדש של רחובות, הבנוי בסיגנון של "עידן החלל". עוצב על ידי האדריכל הישראלי משה הראל, האחראי גם להקמתם של בניינים אחרים בשטח המכון. המבנה תוכנן באופן שמגדל אחד חובק את הפלטרון עצמו ומעליו כיפה דמוית־ביצה בעלת שתי קומות. קומה אחת מכילה מעבדה רחבת־ידים למקור־ היונים ובקומה השניה נמצא יציע המבקרים, המוקף חלונות מן הרצפה עד לתקרה. סמוך אליו עומד מגדל תאום, המחובר למגדל המאיץ בששה מישרים והוא מכיל כבלים חשמליים, צנרת, מדרגות לשעת חירום ומעליות להובלת מטענים ולנוסעים. מעליות אלה יכולות לנוע גם כשהמאיץ בפעולה, היות והן מוגנות מפני קרינה.

תפקידו של מאיץ גרעיני הושווה לזה של מיקרוסקופ: ככל שהגוף הנבדק קטן יותר דרוש מיקרוסקופ גדול יותר. כשהמדובר בגוף כה זערורי כמו גרעין אטומי, אחד חלקי עשרת אלפים של אטום, הרי שבחינתו מקרוב מצריכה מיקרוסקופ גדול מאד.

פרופ גבריאל גולדרינג, פיסיקאי במכון ויצמן, המתאם את תכנית המאיץ והעומד בראש מרכז קנדה לפיסיקה גרעינית, מסביר את מטרתו של מתקן המחקר החדש: אנחנו מתענינים בבעיות כגון

צורות גרעינים, המבנה הפנימי שלהם ופעולות הגומלין שלהם בינם לבין עצמם. זאת התמונה הכוללת של הפיסיקה הגרעינית. אך כל אחד מאתנו גע באפיק מחקר המיוחד לו, כל אחד מציב לעצמו מטרות משלו וכל אחד יש לו תחומי התענינות משלו לעצמו מטרות משלו וכל אחד יש לו תחומי התענינות משלו אם רוצה אתה לחקור גרעינים, הכרחי הוא שתסתייע במאיץ". יש מגוון רב של דגמי מאיצים. הפלטרון ומנה על משפחת המאיר צים האלקטרוסטטיים – שבהם החלקיקים הטעונים מואצים על ידי שדה אלקטרוסטטי. תודות לאיכותה הגבוהה של הקרן עדם מועדפים, מועדפים המאיצים האלקטרוסטיים על דגמי מאיר שהם יוצרים, מועדפים המאיצים האלקטרוסטטיים על דגמי מאיר

צים אחרים למחקר המבנה הגרעיני. מאויברסיטה מאיץ־קופלר, המופעל יחדיו על־ידי מכון ויצמן, האוניברסיטה העברת ואוניברסיטת בן־גוריון, הוא אחד ממכשירי הנסוי הקיימים המתקדמים ביותר. הוא מהווה משאב לאומי חדש, שישרת פיסי־קאים מישראל ומחו"ל כאחד ויהווה אמצעי הדרכה ולימוד מצוין לפיסיקאי המחד.

The function of a nuclear accelerator has been compared to that of a microscope; the smaller the object examined, the larger the microscope you will need. When the object is as minute as an atomic nucleus — about one ten thousandth of the size of an atom — scrutinizing it requires a very large microscope indeed!

Prof. Gvirol Goldring, the Weizmann Institute physicist who coordinated the acelerator project and heads the Canada Centre, explains the purpose of the new research facility: "We are interested in such questions as shapes of nuclei, their internal organization, and their interactions with each other. That is the overall view of nuclear physics; each generation of physicists brings the nucleus closer and closer into focus. We all have our own specific research directions, targets and particular areas of interest within this broad expanse of research, but whatever the area, if you want to study nuclei you must have an accelerator."

There are many different types of accelerators; the family to which the Pelletron belongs—that of the electrostatic accelerators—is conceptually one of the simplest, in which the charged particles are accelerated by a static field. Because of the high quality of the beam they produce, electrostatic accelerators are now preferred over other types of accelerators for the study of nuclear structure.

One of the most advanced experimental tools in existence, the Koffler Accelerator, operated jointly by the Weizmann Institute, the Hebrew University and Ben-Gurion University of the Negev, is a new national resource serving physicists both here and abroad and providing Israel with an excellent training ground for tomorrow's scientists.

THE KOFFLER ACCELERATOR AT THE WEIZMANN INSTITUTE OF SCIENCE

With the recent inauguration of the Koffler Accelerator at the Weizmann Institute of Science, Israel's nuclear physicists acquired one of the most advanced tools for probing the secrets of the universe. The futuristic twin-tower accelerator, rising over the Rehovot campus, houses a 14 U.D. Pelletron, a sophisticated research instrument for the study of the nucleus of the atom.

The idea for the new accelerator was first put forward in 1968, when it became apparent that the future of nuclear structure research in Israel depended on the acquisition and installation of a modern accelerator facility. After a period of careful study and evaluation of various types of accelerators, the go-ahead was given for the pelletron subject, one of the most complicated ever undertaken in Israel. Next came the stage of painstaking construction which was supervised by an Institute team, headed by Dr. Eliel Skurnik. On November 9, 1976 after remarkably few delays, except for the Yom Kippur War which held up building for six months, the completed accelerator—first phase of the Canada Centre of Nuclear Physics—was dedicated in the presence of government leaders, scientists and prominent quests from Canada and Israel.

Rehovot's new "space-age" accelerator towers were designed by the Israeli architect Moshe Harel, whose many commissions include several other buildings on the Weizmann Institute campus. The structure was so devised that one tower encloses the Pelletron itself and is topped by a two-storey, egg-shaped dome which contains a spacious ion source laboratory on one level and a visitors' gallery, encircled by floor-to-ceiling windows, on the next. Alongside and joined to the accelerator tower at six levels stands its twin, holding the "guts" of the building — cables, piping, emergency staircase and elevators for freight and passengers who, protected from radiation, can move up and down with impunity while the accelerator is in operation.

