

שנת הクリיסטלוגרפיה
הBIN-לאומית 2014
יום הבולאות

כסל התשע"ד • 12/2013 • 935

הדף תוארו באלפי מאמרים מחקר ובו יותר מ-40 ספרי מדעיים. יתר על כן, לאור פריצת-הדרך של שכטמן, נאלץ האיחוד הבינלאומי לקרטולוגרפיה לשנות את ההגדה הבסיסית של חומר גיבש.

אהוד קין
פרופסור לכימיה בטכניון, נשיא החברה הישראלית לכימיה,
העורך הראשי של כתב העת הישראלי לכימיה וויר ועדת
מקצע הכלכלה של משרד החינוך.

תיאור הבול ומעטפת היום הראשון

ההמונה דמיות הפרחים של הבול היא צלום במיירוסקופ אלקטטרונים של צברי גבישים קוואזי-מחזוריים של אלומיניום-מגנום, אשר הוכנו בשנת 1985 על ידי ד"ר אגנס שאנאי ועמיתיה במרכז הפיתוח של תעשיית האלומיניום ההונגרית. ברקע שמאחורי "הפרחים" מוצגת תבנית עקופה של אלומת אלקטטרונים, לאחר שפגעה בגבישים קוואזי-מחזוריים. הסימטריה המוחומשת המושלמת של

גם התמונה של מעתפת היום הראשון מתחאת גבישים
קזאי-מחזירים של אלומיניום-מַגְןָן, אשר צלמו במקראוסkop
אלקטטרונים על ידי פרופ' אַ-פָּאנְגְ צָאי מאוניברסיטת טוהוקו

גבישים קוואדי-מחזריים

חומרים גבישיים נמצאים בכל מקום בטבע ומוכרים לכולם בצורה של אבני חן, פתית-שלג ווצצים או גרגירים של מלחה. חקר המבנה והתכונות הפנימיות שלהם מעניק לנו הבנה עמוקה לגבי סידור האטומים והמולקולות במאובן המוצק, וכן ניתן לקדם את מדעי הכימיה, הפיזיקה, הבiology והרפואת.

מאה שנים חלפו מאז הצליח האדם לפענחו את סודותיהם של הגבישים על-ידי שימוש בקרני רנטגן. מדע הקיריסטולוגרפיה, אשר עוסקת בפיענוח המבנה המולקולרי של הגבישים, מאפשר לנו לפענחו את מבנה הדן"א, להבין איך נוצרים חלבונים בתאים, להבין וליצור שבבי מחשב, ולעזר לנו בתכנון של תרומות חדשות ושפען של חומררים אחרים. זאת הסיבה שב يول 2012 החלטה העצרת הכלכלה של האונס לקבוע את שנת 2014 כשנת הקיריסטולוגרפיה הבן-לאומית, לציון 100 שנים להעתקת פרוס נובל לקיריסטולוגרים הראשונים, אב ובן. ויליאם הנרי בראג וויליאם לורנס בראג.

במרץ 1982, בעת שחקר סגסוגות של אלומניום כאורח הסוכנות הלאומית לתקנים בברילנד, ארה"ב, גילה פרוא' דן שכתמן מהטכניון צורה חדשה של חומר: גבישים קוואצ'י-מחזוריים, הידועים גם בשם קוואצ'י-גבישים. היגיון עורר פולמוס מדעי ארוך, ושכתמן נאלץ להזכיר זמן רב

בניסויונות לשכנע את עמיתיו בנסיבות התגלית של...
ההישג של פרופ' שכתמן אינו רק גילוי קיום של הגבישים
הקוואדי-מחזריים, אלא גם ההכרה בחשיבותו של היגיון
ונוחישותו לשכנע קרויה מדעית ספקנית. כמעט 30 שנים
מאוחר יותר והcordis פרופ' שכתמן צוכה היחיד של פרס
נובל לכימיה לשנת 2011. ועדת הנובל הסבירה כי למרות
שתגליות היויתה שנייה במחולקת, הוא המציא לגורם לשינוי
תיאורות מדעיות שהיו מקובלות לפחות עצם טבעו של החומר.
למעשה, גילוי הגבישים הקוואדי-מחזריים פתח תחום חדש
במדע. מאות חומרים כאלה התגלו ותכונותיהם יוצאות

עיצוב בול, מטפסה וחוטמת: דיזנגוף סנטר

**Stamp, FDC & Cancellation Design:
David Ben-Hador**

International Year of Crystallography 2014, Philately Day

Quasi-Periodic Crystals

A new type of matter

Crystals – familiar to all in gemstones, glittering snowflakes or grains of salt – are everywhere in nature. The study of their inner structure and properties provides us with deep insight into the arrangement of atoms in the solid state - insights that advance the scientific fields of chemistry, physics, biology and medicine.

A century has passed since crystals first yielded their secrets through the use of X-rays. Since then, crystallography, which has become the very core of structural science, has allowed us to decipher the structure of DNA, understand and manufacture computer microchips, showed us how proteins are created in cells and helped us to design powerful new materials and drugs. That is why in July 2012 the General Assembly of the United Nations designated 2014 as the International Year of Crystallography, marking 100 years since the Nobel Prize was awarded to the first crystallographers, father and son William Henry and William Lawrence Bragg.

In April 1982, while studying aluminum-manganese alloys as a visiting scholar at the National Bureau of Standards in Maryland, USA, Prof. Dan Shechtman of the Technion – Israel Institute of Technology, discovered a new form of matter, quasi-periodic crystals, also known as quasicrystals. The discovery sparked an extended scientific debate and Shechtman was forced to devote much time to convincing his colleagues of the veracity of his discovery.

Prof. Shechtman's achievement went beyond the discovery of the quasicrystals themselves, also entailing his recognition of the significance of the discovery and determination to convince the skeptical scientific community accordingly. Nearly 30 years later Prof. Shechtman was named the sole recipient of the 2011 Nobel Prize in Chemistry. The Nobel Committee explained that although his discovery was extremely controversial, his work eventually forced scientists to reconsider their conception of the very nature of matter. In fact, the discovery of quasi-periodic crystals opened up a new field of science. Hundreds of such materials have subsequently been discovered, with their extraordinary properties reported in thousands

חותמת אירע להופעת הבול SPECIAL CANCELLATION

of research articles and more than 40 scientific books. Furthermore, the International Union of Crystallography revised its basic definition of a crystal in light of Shechtman's breakthrough.

Ehud Keinan

Professor of Chemistry at the Technion, President of the Israel Chemical Society, Editor-in-Chief of the Israel Journal of Chemistry and Chairman of the Advisory Council, High School Chemistry Education, Ministry of Education.

Description of the stamp and the First Day Cover

The flower-like image on the stamp is an electron microscope photo of icosahedral quasicrystal aggregates of an aluminum-manganese alloy, which were prepared in 1985 by Dr. Ágnes Csanády and her colleagues at the Hungarian Aluminum Industry Development Center. The background behind the "flowers" features an electron diffraction pattern from an icosahedral quasicrystal. The perfect pentagonal symmetry is highlighted in the diagram.

The image featured on the First Day Cover also depicts quasi-periodic crystals of an aluminum-manganese alloy, which were photographed with an electron microscope by Prof. An-Fung Tsai of Tohoku University, Japan.

הנפקה:	דצמבר 2013
מידת הבול (מ"מ):	H 30 ג W 40 ג
לוחות:	924
בולים בגיליון:	15
שבלים בגיליון:	5
שיטות הדפסה:	אופסן
סימן אבטחה:	מיקרו-לנס
שם הדפסה:	Cartor Security Printing, France