

שנת 2009 נבחרה על-ידי האיגוד הבין-לאומי לאסטרונומיה וארגון אונסק"ז כשנת האסטרונומיה הבין-לאומית, לציון מלאת 400 שנה להמצאת הטלסקופ האסטרונומי בידי גלילאו גליליי - הראשון שהפנה טלסקופ מחקר אל השמיים, פתח אופקים חדשים למדענים, והרחיב את גבולות היקום המוכר. סדרת הבולים נותנת ביטוי לשלוש אבני-דרך בתחום המדידה האסטרונומית, שלהן השפעה מכרעת על הבנת היקום.

"מטה יעקב" – רלב"ג

חקר הרקיע ומיפויו החל עוד לפני גלילאו, ולעם היהודי הייתה תרומה ייחודית בו בדמות "מטה יעקב" - כלי מדידה עתיק למיפוי כוכבים, שתואר לראשונה וכנראה הומצא על-ידי רלב"ג (רבי לוי בן גרשום, צרפת, 1344-1288). המוט באורך 1.4 מטר היה מחורץ בשנתות מדידה ולאורכו החליקו בניצב עד 7 מוטות משניים באורכים שונים - "הרוכבים". כיוון קצה אחד של הרוכב לעבר כוכב, והזזת הרוכב לאורך המוט המחורץ עד שקצהו השני נשק לכוכב אחר, מדד את הריחוק הזוויתי בין שני הכוכבים.

מדידת גובה כוכב הצפון מעל לאופק באמצעות ״מטה יעקב״, שימשה גם לניווט ולמציאת קו הרוחב של מקום התצפית.

עידוש כבידתי

טלסקופים הפכו עם השנים לכלי מחקר רב-עוצמה, והגדולים שבהם מצויידים במראות קעורות בקוטר 8-10 מטרים. ככל שהמראה גדולה יותר נאסף יותר אור ומתאפשרת מדידת גרמי שמיים חיוורים יותר, לכן מתוכננות כיום מראות בקוטר 40 מטרים ויותר. אולם הטלסקופים הגדולים ביותר ביקום הם אלה הטבעיים, שאופן פעולתם התגלה על-ידי המדען היהודי אלברט איינשטיין, מחשובי המדענים בכל הזמנים.

אחת המהפכות שלו בפיזיקה, הקשורה בטבע המרחב והזמן, היא "תורת. היחסות הכללית", אשר לפיה קרני אור מגרם שמיימי רחוק, החולפות קרוב לגוף מאסיבי, משנות את מהלכן ומתעקמות בגלל כוח הכבידה שלו. גוף מאסיבי בין הצופה לבין גרם שמיימי רחוק פועל כעדשה: דמות הגרם הרחוק מוגדלת ואף מוכפלת למספר בבואות הנראות לצידי ה"עדשה". הרחוק מונים שמיים שיוצרים עדשות כבידה יכולים להיות כוכבים רגילים כבידתי". גרמי שמיים שיוצרים עדשות כבידה יכולים להיות כוכבים רגילים או צפופים יותר, "חורים שחורים", גלקסיות או צבירי גלקסיות. הטלסקופים הגדולים של הטבע מאפשרים הצצה אל היקום הרחוק, משם, לפני יותר מעשרה מיליארדי שנים, נפלט האור שאנו קולטים. תמונות של גרמי שמיים מתשרה מיליארדי שנים, נפלט האור שאנו קולטים. תמונות של גרמי שמיים החוקים ביותר, שעברו עידוש כבידתי, מצולמות כיום על-ידי גדולי הטלסקופים הקרקעיים והחלליים.

ליס"א (LISA) – אנטנה חללית של אינטרפרומטר לייזר

בעתיד ייפתחו תחומי מחקר אסטרונומי חדשים באמצעות בדיקת קרינות בתחומים שעדיין לא נחקרו. דוגמה לכך היא קרינת הכבידה. על אף שקיומה נגד מתורת היחסות הכללית של איינשטיין, איש לא הצליח עד היום לקלוט נגזר מתורת היחסות הכללית של איינשטיין, איש לא הצליח עד היום לקלוט אותה. לשם גילוי ומדידת גלי כבידה מתוכננת בימים אלה מערכת ליס"א משולש העתידית, שמורכבת משלוש חלליות הכבידה מעוותים את המרחב ומקושרות ביניהן באמצעות קרני לייזר. גלי הכבידה מעוותים את המרחב בסביבת החלליות, וכתוצאה מכך החלליות יתרחקו או יתקרבו זו לזו. המרחק בין כל זוג חלליות יהיה חמישה מיליון קילומטר. כל שינוי זעיר עד מרחיונית ס"מ באורך של אחת מצלעות המשולש הענק, יימדד על-ידי קרני הלייזר הנובעות מן החלליות ויחשוף את קיומו של גל כבידה.

בישראל פועלות קבוצות מחקר אסטרופיזי ברוב האוניברסיטאות. אוניברסיטת תל-אביב מפעילה מצפה כוכבים מחקרי במצפה רמון, בעוד שמאות חובבי אסטרונומיה, שחלקם מאוגדים באגודה הישראלית לאסטרונומיה, צופים בשמיים מטלסקופים פרטיים וממצפי כוכבים לחובבים ברחבי הארץ.

ד"ר נח ברוש מנהל מצפה הכוכבים ע"ש פלורנס וג'ורג' וייז אוניברסיטת תל–אביב

תיאור הבולים

"מטה יעקב" – רלב"ג - אסטרונומיית העבר. האיור ממחיש שימוש ב"מטה יעקב" לאסטרונומיה ולניווט, באמצעות כיוון הקצה העליון של הרוכב אל השמש או אל כוכב וקצהו התחתון אל האופק.

אי השכנים או את כוכב יון דור יווניותן אי האוכק. בשולי הגיליון: קבוצות הכוכבים "העגלה הגדולה", "העגלה הקטנה" ובקצה שלה "כוכב הצפון", "קסיופיאה"; כדור הארץ; השמש; "סרגל" וירטואלי שיחידותיו (AU - Astronomical units) משמשות למדידת מרחקים במערכת הניממי.

עידוש כבידתי - אסטרונומיית ההווה. האיור ממחיש עידוש כבידתי אל מול טלסקופ החלל "האבל". מסת הגלקסיה שמול הטלסקופ מעקמת את המרחב סביבה, מסיטה הרחק מאחוריה את מהלך קרני האור מ"קוואזר" (חור שחור ענק במרכזה של גלקסיה הפולט אנרגיה רבה), וגורמת להן להתעוות סביב הגלקסיה, תוך שהיא יוצרת משני עבריה שתי בבואות של הקוואזר.

בשולי הגיליון: "הצלב של איינשטיין" (עדשת כבידה שבמרכזה גלקסיה היוצרת 4 בבואות של הקוואזר Q2237+030); גלקסיה ספירלית; "סרגל" וירטואלי שיחידותיו (pc - parsec) משמשות למדידת מרחקים בין כוכבים וגלקסיות.

ליס"א - אסטרונומיית העתיד. האיור ממחיש מדידת גלי כבידה באמצעות קרני לייזר משלושה לוויינים המרכיבים את מערכת ליס"א. גלי הכבידה נפלטים עקב התעקמות המרחב, כאשר שני כוכבי נויטרונים נעים זה סביב זה לקראת מיזוגם.

בשולי הגיליון: חור שחור המוקף בדיסקת חומר הנספח אליו וממנה נפלטים סילוני חלקיקים; מעגלי גז ואבק הנפלטים מערפילית "הביצה"; אחד מ"עמודי" הגז שבערפילית "העיט"; "סרגל" וירטואלי שיחידותיו (Mpc - Megaparsec) משמשות למדידת מרחקים גדולים ביקום.

בשבלי הבולֵים נראה הטלסקופ של גלילאו גליליי.

במעטפת היום הראשון נראה מצפה הכוכבים ע"ש וייז של אוניברסיטת תל אביב, שפועל ליד מצפה רמון.

> מעצב: דויד בן-הדור Designer: David Ben-Hador

International Year of Astronomy 2009

The year 2009 has been designated by the International Astronomical Union and UNESCO as the International Year of Astronomy, marking the 400th anniversary of the invention of the astronomical telescope by Galileo Galilei – the first person to turn a research telescope toward the sky, opening new horizons for scientists and expanding the boundaries of the known universe.

This stamp series displays three milestones in the field of astronomical measuring which greatly impact our understanding of the universe.

Jacob's Staff - Gersonides

The study and mapping of the heavens began before Galileo, with the Jewish people making a unique contribution in the form of "Jacob's Staff" – an ancient measurement tool for mapping stars, which was first described and in all likelihood invented by Gersonides (Rabbi Levi ben Gershon, France, 1288-1344). The staff was 1.4 meters long and was notched with scale graduations along its length. Up to seven cross-pieces of varying lengths, called "transoms" slid up and down along the main piece. By aiming one end of the transom toward a star and sliding the transom along the notched main staff until its other end lined up with another star, one could measure the angular distance between those two stars. Navigators also made use of Jacob's Staff to measure the altitude of the North Star above the horizon in order to determine their

Gravitational Lensing

Over the years, telescopes have become a powerful research tool, and the largest among them are equipped with concave mirrors measuring 8-10 meters in diameter. The larger the mirror, the more light it captures, allowing the measurement of fainter astronomical bodies. Mirrors measuring 40 meters in diameter and more are planned for the future. But the universe's largest telescopes are those that exist in nature. The way in which they work was discovered by the Jewish scientist Albert Einstein, one of the most significant scientists of all time.

One of his revolutionary breakthroughs in the field of physics is the General Theory of Relativity, dealing with space and time in nature.

According to this theory, as light rays from a distant astronomical body pass by a massive object, the object's gravitational force affects their paths and they bend. Thus, a massive body that is positioned between an observer and a distant astronomical body acts as a lens – the distant body appears enlarged and may even be multiplied, as a number of images appear alongside the "lens". The phenomenon of light rays changing course due to gravitational force is called "Gravitational Lensing". Gravitational lenses may be created by regular stars or by more dense astronomical bodies such as black holes, by galaxies or even by clusters of galaxies. Nature's largest telescopes allow us to glimpse distant galaxies and perceive light that was emitted from them more than ten billion years ago. Today, the largest ground and space telescopes photograph images of extremely distant astronomical bodies after they have undergone gravitational lensing.

LISA – Laser Interferometer Space Antenna In the future, new astronomical research fields involving the examination of radiation in spectral regions that have yet to be studied will develop. One example of this is gravitational radiation. Although its existence may be derived from Einstein's General Thank of Cariffic Paris Theory of Gravity, no one has been able to detect it as yet. The future LISA system, which will comprise three spacecraft arranged at the apices of an equilateral triangle and connected by laser beams, is currently being planned to detect and measure gravitational waves. Gravitational waves warp the space surrounding the spacecraft and as a result the spacecraft will move farther away from or closer toward each other. Each pair of spacecraft will be spaced five million kilometers apart. Any miniscule change of up to one millionth of a centimeter in the length of one of the sides of the huge triangle will be measured by the laser beams emanating from the spacecraft, revealing the existence of a gravitational wave.

השירות הבולאי - טל: 076-8873933 שדרות ירושלים 12. תל-אביב-יפו 68021 The Israel Philatelic Service - Tel: 972-76-8873933

12 Sderot Yerushalayim, Tel-Aviv-Yafo 68021 www.israelpost.co.il * e-mail: philserv@postil.com

Astrophysics research groups are active at most of Israel's universities. Tel-Aviv University operates a research observatory in Mitzpe Ramon and hundreds of astronomy enthusiasts, some of whom are members of the Israeli Astronomical Association, observe the skies through private telescopes and from amateur observatories located throughout the country.

> Dr. Noah Brosch Director, The Florence and George Wise Observatory Tel-Aviv University

Description of the Stamps

Jacob's Staff – Gersonides – astronomy of the past. The illustration demonstrates the use of Jacob's Staff in astronomy and navigation, by aiming the upper end of the transom to the sun or to a star and its lower end to the horizon

On the sheet selvedge: the Big Dipper and Little Dipper constellations and at the edge, Polaris the North Star; Earth; the Sun; a virtual 'ruler" whose units (AU - astronomical units) are used to measure distances within the solar system.

Gravitational Lensing – astronomy of the present. The illustration demonstrates gravitational lensing against the Hubble space telescope. The mass of the galaxy opposite the telescope bends the space around it, diverting the paths of light rays coming from a quasar located far behind it (a huge black hole in the center of a galaxy that emits large amounts of energy), causing them to warp around the galaxy while creating images of the quasar on either side of the galaxy.

On the sheet selvedge: Einstein's Cross (a gravitational lens with a galaxy in the center that creates four images of the quasar Q2237+030); a spiral galaxy; a virtual "ruler" whose units (pc - parsecs) are used to measure distances between stars and

LISA – the astronomy of the future. The illustration demonstrates measuring gravity waves by using laser beams from the three satellites that comprise the LISA system. Gravity waves are emitted by the bending of space, when two neutron stars orbit around each

other as they approach merging.

On the sheet selvedge: A black hole surrounded by a disc of material that is being accreted and which emits bursts of particles; gas rings emitted from the "Egg" nebula; one of the gas "pillars" in the "Eagle" nebula; a virtual "ruler" whose units (Mpcmegaparsecs) are used to measure large distances in the universe.

Galileo Galilei's telescope is depicted on the tabs.

Tel-Aviv University's Florence and George Wise Observatory, located near Mitzpe Ramon, is depicted on the First Day Cover.

Issue: April 2009

Designer: David Ben-Hador

Stamp Size: 30.8 mm x 40.0 mm

Plate nos.: 755 (no phosphor bar)

756 (no phosphor bar)

757 (no phosphor bar)

Sheet of 12 stamps, Tabs: 4 Printers: E. Lewin-Epstein Ltd. Method of printing: Offset